Heat From Underground Energy London

Henrique R.P. Lagoeiro | 7 May 2019
7th DHC+ Student Awards
Agenda

- Highlighting the relevance of low carbon heating
- Introducing the opportunity
- Showing the key components of the system
- Analysing its potential benefits
The Future of London

Carbon Emissions (2015)

Energy Consumption (2015)

- 90% of heating sources are gas-fired boilers
- CHP will no longer be low carbon

London to become a zero carbon city by 2050

Wide deployment of low carbon heating systems

District energy only meets 6% of energy demand
The Opportunity

The Underground generates significant amounts of heat

500 GWh of heat per year is generated, which would be enough to heat nearly 42,000 homes in London.

The London clay surrounding the walls act as an insulator, leading to tunnel temperatures above 30°C.

The Opportunity

The Underground generates significant amounts of heat

500 GWh of heat per year is generated, which would be enough to heat nearly 42,000 homes in London.

The London clay surrounding the walls act as an insulator, leading to tunnel temperatures above 30°C.
The Bunhill Waste Heat Recovery System

- The Underground as a heat source
- Extension of an existing heat network
 Bunhill 1 + Bunhill 2
- Expand affordable and low carbon heat
- Move away from fossil fuel heating
- To become operational in June 2019
The Energy Centre

An overview of the system

- 780 kW
- 1 MW COP = 3.76
- 75 m³
- 17 to 25°C
- 372 kW_th
- 237 kW_e
- Thermal Store
- Dry Air Coolers
- Vent Shaft
- CHP units
- Heat Pump

Demand: 6 Buildings - 11,358 MWh/year
Waste Heat Recovery

Extract Mode
- 9 to 16°C
- 11 to 18°C
- 6 to 13°C
- 18 to 25°C

Supply Mode
- 17 to 25°C
- 6 to 13°C
- 11 to 18°C
- 8 to 16°C

Extract Mode:
Colder months

Supply Mode:
Warmer months

780 kW
Copper finned copper tubes
Benefit Analysis

Comparison: 1 MW$_{th}$ CHP and Heat Pump meeting a demand of 5000 MWh/year

Reference case: Communal gas boilers and vapour compression refrigeration

Analysis: Different CHP to Heat Pump deployment ratios gradually varying from 1:0 to 0:1

Benefits: the analysis considered expected energy, carbon and cost savings
Energy and Carbon Savings
Energy and Carbon Savings

Gas, Electricity and Carbon Savings for Different CHP/Heat Pump Deployment Ratios

- Gas
- Electricity

CHP/Heat Pump Ratio

0% 100/0 90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90 0/100

-40% -20% 0% 20% 40% 60% 80%
Energy and Carbon Savings

Gas, Electricity and Carbon Savings for Different CHP/Heat Pump Deployment Ratios

- Gas
- Electricity
- Total Energy

CHP/Heat Pump Ratio

100/0 90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90 0/100
Energy and Carbon Savings

Gas, Electricity and Carbon Savings for Different CHP/Heat Pump Deployment Ratios

- Gas
- Electricity
- Carbon
- Total Energy

CHP/Heat Pump Ratio

39th Euroheat & Power Congress | (6) 7-8 May 2019 | Nantes, France - www.ehpcongress.org
Energy Cost Savings

Energy Cost Savings for Different CHP/Heat Pump Deployment Ratios

CHP/Heat Pump Ratio

-50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50%

Heating

100/0 90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90 0/100
Energy Cost Savings

Energy Cost Savings for Different CHP/Heat Pump Deployment Ratios

- **Heating**
- **Electricity**
- **Total**

<table>
<thead>
<tr>
<th>CHP/Heat Pump Ratio</th>
<th>Heating</th>
<th>Electricity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/0</td>
<td>-50%</td>
<td>0%</td>
<td>-50%</td>
</tr>
<tr>
<td>90/10</td>
<td>-40%</td>
<td>0%</td>
<td>-40%</td>
</tr>
<tr>
<td>80/20</td>
<td>-30%</td>
<td>0%</td>
<td>-30%</td>
</tr>
<tr>
<td>70/30</td>
<td>-20%</td>
<td>0%</td>
<td>-20%</td>
</tr>
<tr>
<td>60/40</td>
<td>-10%</td>
<td>0%</td>
<td>-10%</td>
</tr>
<tr>
<td>50/50</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>40/60</td>
<td>10%</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>30/70</td>
<td>20%</td>
<td>0%</td>
<td>20%</td>
</tr>
<tr>
<td>20/80</td>
<td>30%</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td>10/90</td>
<td>40%</td>
<td>0%</td>
<td>40%</td>
</tr>
<tr>
<td>0/100</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
</tr>
</tbody>
</table>

39th Euroheat Power Congress | (6) 7-8 May 2019 | Nantes, France - www.ehpcongress.org
Energy Cost Savings

Energy Cost Savings for Different CHP/Heat Pump Deployment Ratios

- Heating
- Cooling
- Electricity
- Total

CHP/Heat Pump Ratio

Energy Cost Savings Chart
Summary

- Heat pumps can reach significant carbon savings (up to ~60%)

- The cost savings can be even greater if cooling is considered (up to ~40%)

- CHP can be cost-effective depending on electricity prices

- A flexible system can explore the benefits of both technologies
Conclusion

Heat pumps can be a key technology towards low carbon heating

Residents
- Energy security
- Better air quality
- Lower heating bills
- Addressing fuel poverty

The Underground
- Cooling benefit
- Potential revenue

Government
- Emission targets
- Energy savings
- Energy security

Community
- Lower emissions
- Better air quality
THANK YOU!

This project is being funded by London South Bank University, Transport for London and the Engineering and Physical Sciences Research Council (EPSRC) sponsored project Low Temperature Heat Recovery and Distribution Network Technologies (LoT-NET). The authors are also very grateful for the support received from the London Borough of Islington.

HENRIQUE R.P. LAGOEIRO
ROSCOEPH@LSBU.AC.UK